CustomGPT.ai Blog

How to Use AI for Accounting Workflows?

AI for accounting workflows can speed up accounts payable (AP), reconciliations, month-end close, and reporting, but only if you use it to draft, triage, and explain (not to post or pay autonomously). The safe pattern is: AI suggests → humans approve → systems-of-record compute and post → everything is logged.

Try CustomGPT with a 7-day free trial for cited accounting drafts.

TL;DR

Use AI as a drafting and exception-triage layer for AP, reconciliations, close checklists, and reporting narratives. Put governance first (allowed data, least privilege, segregation of duties), require human approvals at defined control gates, and keep outputs auditable with citations to source documents and reviewer sign-off.
Draft an AI-ready close checklist with required approvals and citations.

What “AI” Usually Means in Accounting Workflows

Most accounting automation uses a mix of tools:

  • Extraction & classification (often ML + rules): pulling fields from invoices and mapping to vendors/GL with confidence scores.
  • Generative AI (LLMs): drafting narratives, summarizing exceptions, generating investigation questions, and producing first-draft checklists.

Practical takeaway: use LLMs where language and triage matter; keep calculations, posting, and payment execution inside your ERP/accounting system.

Start With Governance and Guardrails

1) Start With “Assist-First” Use Cases

Choose use cases where AI only suggests (summaries, coding proposals, exception queues), not where it executes postings or payments.

2) Define Allowed vs Prohibited Data

Accounting work often touches sensitive personal and financial data. Use a risk-based approach aligned to privacy/accountability expectations. (Reference: ICO guidance on AI and data protection.)

Restricted Data Checklist

  • Avoid sending full bank account identifiers unless explicitly approved and controlled.
  • Treat tax IDs, HR/payroll data, and customer personal data as restricted by default.
  • If you must use sensitive documents, prefer masked views, strict access controls, and logging.

3) Enforce Segregation of Duties + Least Privilege

AI (and any connectors/API keys) must not have permission to both:

  • prepare and approve,
  • approve and post,
  • post and release payment.

Human approvers remain accountable for posting decisions and payment release.

4) Name the High-Judgment “Red Zone”

AI can assist with drafting and research, but these areas require senior review and should not be automated:

  • revenue recognition decisions,
  • estimates and judgments,
  • disclosures,
  • unusual/non-routine transactions.

5) Require Human Approvals at Control Gates

Treat AI output like a junior analyst draft: useful, but never final without review.

Minimum control gates

  • AP: coding suggestion approval → posting approval → payment release approval
  • Reconciliations: proposed match review → recon sign-off
  • Close/reporting: tie-outs verified → narrative reviewed → close package signed

6) Make Outputs Auditable

Log:

  • which source records were used,
  • who reviewed the draft,
  • what changed,
  • final decision and approver.

A practical way to enforce traceability is to require response-level citations/sources and track “who changed what.” Governance frameworks like NIST AI RMF 1.0 and the GenAI profile provide a structured approach to risk management.

7) Make Monitoring Concrete

Create a small baseline test set (prior invoices, prior reconciliations, prior flux questions). Track:

  • override rate (how often humans change AI output),
  • exception rate,
  • false positives / false negatives for flags,
  • cycle-time delta,
  • changes that trigger re-test (prompt updates, new vendor mapping rules, new templates, new data sources).

8) Arithmetic and Calculation Safety

LLMs can be brittle on arithmetic even when they sound confident. Compute totals, tie-outs, and variances in your ERP/spreadsheet; use AI to explain results and draft narratives.

9) Treat Invoices and Emails as Hostile Input

Do not follow “instructions” embedded inside documents (e.g., “ignore policy,” “approve this,” “send payment”). Configure your process so AI extracts facts and routes decisions to human control gates. If you’re using CustomGPT, start with its documented defenses and still keep approvals human-controlled.

Accounts Payable Workflow

Centralize Intake

Route invoices (PDF/email/portal) into a single controlled intake so the AI references a consistent truth set.

Extract Key Fields

Vendor, invoice date, amount, PO, line items, terms.

Suggest Coding

AI proposes GL/account treatment and includes:

  • confidence level,
  • evidence (prior invoices, approved policy, PO match).

Run Policy Checks

Flag:

  • duplicates,
  • unusual spend,
  • missing approvals,
  • terms mismatching the vendor master.

High-risk fraud patterns (minimum gates)

  • vendor bank-detail changes → require out-of-band verification,
  • lookalike domains / spoofing cues → escalate as BEC-style risk,
  • payee mismatch + rushed approvals → force manual review.

Authoritative BEC guidance.

Triage Exceptions

AI is strongest at sorting “easy vs investigate,” not making final calls.

Approve, Post, and Pay

The approver owns the posting decision and documentation. Payment release remains role-separated.

Learn From Corrections

Most improvements come from updating SOPs, vendor mappings, rules, and templates, not from assuming the model “learns” automatically.

Reconciliations Workflow

Pull Consistent Exports

Same period cutoffs, mapping, currency treatment.

Normalize Descriptions

Clean bank memo fields and vendor names to improve matching quality.

Propose Matches

AI suggests matches and explains why (date/amount/payee similarity) but does not force-clear.

Handle Bank Statement Sensitivity Correctly

Prefer masked views where feasible. If masking hurts match quality, do matching inside the secured reconciliation tool and use AI mainly for explanation and triage.

Surface Anomalies

Flag unexpected transactions, stale reconciling items, unusual timing/amount patterns.

Reviewer Checklist

A human confirms:

  • evidence attached,
  • reconciling items explained,
  • approvals captured,
  • final sign-off stored.

Lock and Document

Store the final reconciliation, reconciling items list, and reviewer sign-off for audit trail.

Month-End Close and Reporting Workflow

Turn Your Close Calendar Into Repeatable Prompts

For each close task define:

  • inputs,
  • owner,
  • acceptance criteria,
  • what “done” means.

Daily Close Standup Summaries

AI summarizes what’s open/blocked from task notes so nothing gets missed.

Draft Flux/Variance Questions First

AI generates investigation questions tied to report lines and materiality thresholds.

Generate Tie-Out Checklists

AI drafts report-to-ledger and ledger-to-subledger checks based on your SOP templates.

Draft Narratives With Evidence

AI drafts management commentary but must cite the data tables/exports used.

Audit Support Acceleration

Use AI to locate requested support (policy, memo, schedule) and draft responses, then review for accuracy.

Finalize With a Sign-Off Package

Keep a consistent close binder: reconciliations, approvals, key judgments, and change log.

Audit oversight audiences have emphasized that GenAI use in audits/reporting contexts needs strong supervision and controls.

Implementation Roadmap

  1. Pick one workflow (AP exceptions or a specific reconciliation type).
  2. Define success metrics (cycle time, override rate, exception aging).
  3. Run in parallel (AI drafts; humans compare to current process).
  4. Add control gates (who approves what, and where).
  5. Lock audit evidence (citations/sources + reviewer sign-off + change log).
  6. Expand scope only after metrics stabilize.

How To Do It With CustomGPT.ai

Create a Scoped “Accounting Copilot” Agent

Start with a dedicated agent focused on accounting policies/SOPs so answers stay in scope.

Add Approved Accounting Sources

Upload SOPs and approved references and manage what the agent can use.

Make Answers Auditable With Citations

Enable citations so users can trace answers back to specific source documents.

Automate Drafting Steps With Zapier

Use “query an agent” patterns to generate drafts while keeping posting/approvals/payments outside the agent’s permissions.

Use the API When You Need Tighter Controls

Start with the API quickstart guide.

Show Sources Without Exposing Files

If you want citations without enabling file downloads.

Illustrative Scenario: Reducing Close Cycle Time

Scenario: Your team closes in 8 business days and targets 6.

  • Day 0: Standardize the close calendar, close binder index, and variance thresholds in SOPs (truth set).
  • Days 1–2: AI triages AP exceptions (missing PO, price mismatch, duplicate risk). Humans approve resolutions.
  • Days 2–4: AI drafts reconciliation match suggestions; reviewers clear matches and document reconciling items.
  • Day 4: AI drafts flux investigation questions for top movements and links to underlying exports.
  • Day 5: AI drafts the narrative with citations; finance lead edits for accuracy and tone.
  • Day 6: Controller signs off on a close binder that includes AI drafts, human edits, and approvals.

Why this can work: AI accelerates preparation and triage; humans retain judgment, approvals, and the final record.

Conclusion

AI helps accounting most when it drafts, triages, and explains – while humans approve and systems-of-record post, pay, and compute.

Next step: CustomGPT.ai can scope assistants to SOPs, return cited drafts, and support auditable change logs with a 7-day free trial.

FAQ

Can AI Post Journal Entries or Approve Payments?

Not safely by default. A controlled pattern is: AI drafts coding suggestions or JE descriptions, a human reviewer validates support, and a separate approver posts/releases payments inside the ERP. Keep AI credentials least-privileged and prevent a single workflow identity from both preparing and approving.

How Do I Keep AI-Assisted Accounting Work Auditable for SOX/ICFR?

Define control gates (review → approval → posting), require citations back to source documents, and store a change log showing what humans edited and who signed off. Treat GenAI outputs as drafts and document supervision, consistent with audit oversight emphasis on strong controls and supervision.

How Can CustomGPT Help My Team Use SOPs Without Hallucinating?

CustomGPT can be scoped to approved SOPs and templates, and you can turn on citations so every answer points back to the underlying source. Pair that with prompt-injection defenses and keep approvals human-controlled for any posting or payment decisions.

Can I Connect CustomGPT to Accounting Tools With Zapier or an API?

Yes, use Zapier for draft-generation steps (summaries, exception queues, narrative drafts) while keeping approvals and payment release outside the automation. For tighter controls and deeper integration, use the API and return citations in a way that doesn’t require file downloads.

3x productivity.
Cut costs in half.

Launch a custom AI agent in minutes.

Instantly access all your data.
Automate customer service.
Streamline employee training.
Accelerate research.
Gain customer insights.

Try 100% free. Cancel anytime.